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Abstract. By solving the Laplace equation in an appropriate coordinate frame, simple 
expressions have been derived for the polarizability per unit area of intinitely long chains 
of touching pain of cylinders. The method used presupposes no restrictions on the value 
of the dielectric constant of the cylindrical particles and yields an exact analytic solution 
incorporating all multipoles. The results offer an insight into the effect of long range 
interactions between particle pain. Moreover the technique can be extended to the study 
of arrays generally. Comparisons are made between the induced dipole moment on pairs 
within a chain and the moment on an isolated touching pair in the case of aluminium 
columns in air. A quasistatic assumption is used at optical frequencies. It is found that 
while the general behaviour of the wavclength.dependent polarizability is the same in both 
models, there are significant differences in the average degree of absorption and polarization. 

1. Introduction 

The study of the electromagnetic response to an applied electric field of arrays of small 
particles embedded in another medium has a long history. It remains of interest for 
both fundamental and technical reasons. The widely used dipole theories referred to 
as Clausius-Mosotti, Lorenz-Lorentz or Maxwell-Gamett (depending on the frequency 
domain) and related effective medium models such as the Bruggeman model are not 
able to describe the impact of close approach between particles. However, close 
approach commonly occurs and can lead to substantial changes in response. While 
there has been some useful progress in this area based on the techniques proposed 
originally by Lord Rayleigh [l] which require structure factor sums and very large 
matrices, few useful simple expressions have been found. These are needed for better 
understanding of real systems and for routine analysis of experimental data. This report 
is part of a programme to provide useful analytic expressions for such systems. 

In an earlier work based on a conformal mapping technique [2] study was made 
of the degree of optical absorption and reflection of a thin film with fine columnar 
metal inclusions. The sizes of and spacing between the metal columns is small enough 
for a static approximation to apply. The dependence of absorptance and reflectance 
on the wavelength of the applied field was calculated successively for a film with 
separate, touching and intersecting cylinder pairs as the basic metal inclusion. The 
model for polarizability considered each of these pairs in isolation. The long-range 
effects between pairs, being weak, could be assumed treatable within a Clausius-Mosotti 
type of approximation. Of the three cases considered it was found that maximum 
absorption occurs for a touching pair of cylinders. 
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Recent work on the transport properties of composite media [3-91 has provided 
asymptotic expansions and perturbation formulae for various chains and arrays of 
cylindrical inclusions. In the present study a generalization of the case of touching 
cylinder pairs will be developed. By working in a new coordinate frame we shall find 
exact analytic expressions for the polarizability of infinite chains of touching cylinder 
pairs. The cylinder pairs may be aligned along (chain 1) or perpendicular to (chain 
2) the chain axis (see figures l (a)  and l(c) respectively). The expressions for the 
polarizabilities of the two chains, as well as their derivations, are analogous. Hence 
the derivations of the final expressions for chain I will be presented in detail whilst 
those for chain 2 will merely be stated. - 

E -  --CO--03--CO- (CHAIN 1) (a) 

_. 
(SINGLE) (b) E -  - _CO_ 

E l l l l l l l l l  
Figure 1. ( a )  Chain 1 with an applied x-field. ( b )  a single isolated pair of touching unit 
circles with an applied x-field and (e) chain 2 with an applied y-field. 

Using a conformal mapping method we shall create a coordinate frame in which 
the particle boundary is specified by a constant value of one of the variables. This 
makes it possible to separate variables in the boundary conditions. In this transformed 
frame we then find the solution of the electrostatic problem by solving the Laplace 
equation for static fields applied longitudinally and transversally. The series expansion 
of the potential external to the particles along the Cartesian axes is determined. The 
l / r  coefficient in these expansions is found using residue theory. The resulting 
expressions, which represent the polarizabilities as series, are analytically continued 
and as a result are re-expressed in integral forms valid for all values of the complex 
dielectric contrast lying in the cut plane. 

2. The Longitudinal and transverse polarizabilities for chain 1 

We shall adopt the following conventions throughout. External to the cylinders (region 
1). that is, in the film matrix, the dielectric constant is 1, whilst within the cylinders 
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(region 2) it is E. For simplicity the strength of the applied field will be taken to be 
unity. In this case the polarizability ( 0 1 )  and the dipole moment ( p )  for each particle 
will be numerically equal since p = nE. 

2.1. 7he transformation 

We now find a conformal mapping which takes us from the (5 y )  frame to the (U, U) 
frame. We begin by letting 

z = x + i y  w = u + i u  

and seek our transformation in the form 

w = S(5 )  

where the particle boundary is to be given by a constant value of U. Now, the 
transformation in which constant 1uI represents a single pair of horizontally aligned 
touching circles tangent at the origin of the z plane is [ 101 

The closed cuwes given by constant U and constant U from (1) are in fact precisely 
the equipotentials and force lines respectively resulting from a dipole at the origin of 
the z plane. Hence if we place dipoles w. at the points z = nu, n E 2, we find that the 
required transformation will be given by 

w = x  w. 

E l T l l l I l l l  
(CHAIN 1) 

(SINGLE) (b) 

E l l l l l l l l l  

E -  (CHAIN 2) (c) -* --. 

Figure 2. ( a )  Chain 1 with an applied y-field, ( b )  a single isolated pair of touching unit 
circles with an applied y-field and ( c )  chain 2 with an applied x-field. 
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, 

This last expression is precisely the partial fraction expansion of ( r / a )  cot(rf/a) 
1111, and so the transformation we seek is given by 

(2) 

The distance between the pairs' points of tangency is a, and as a + co(u + 0) we recover 
the transformation (1). When split into its real and imaginary parts (2) yields 

r 
w = U cot uz U=-.  

a 

U sin 2ux 
2(sin2 ux+sinh2 oy) 

U sinh 2 7  
2(sinz ox+sinh* oy) U =  v =  (30, b )  

or alternatively 

y=-tanh-' 2u 
1 2G-u x=-tan-' 2u 

The (U, U) frame is illustrated in figure 3(a). The solid curves in figure 3(a) are the 
possible particle boundaries given by constant U, while the dashed lines are the 

6 

4 

2 

0 

-2 

-4 

-6 -i.5 -10 0 5 10 15 

Figure 3. Three cells in the 'chain' wordinate frames. In both cases the lines of constant 
U (solid) and constant U (broken) are shown. The particle boundaries of chain 1 (a) and 
chain 2 ( b )  wrresponding to a fill fanor f of 0.3 are shown in bold. 
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orthogonal curves given by constant 0. We shall define the central cell to be that for 
which - a / 2  s x s a/2. The sign changes within this central cell for U and v are indicated 
in figure 4. It is clear from figure 3(a)  that the contours of constant U in the (U, U) 
frame are not circles. In fact as the U value decreases the curves become less and less 
circular. However, for an appreciable range of U values (fill factor not large), the 
closed curves given by constant U do closely resemble circles. 

In order to solve the boundary value problem for the electric potential it will 
eventually be necessary to decompose the applied field into its eigenfunction expansion. 
In fact, x and y will have to be expressed as integrals over the positive real axis. We 
shall therefore conclude this section by stating and proving the following theorem. 

Theorem. Let z = x + iy and w = U + iu and suppose there exists a function s" such that 

w = s " ( Z )  

where the inverse function F1( w )  is analytic in the domain U > y and tends to zero 
uniformly in v as (w('03. If the integral of \ F ' ( w ) l  along any vertical line U = y'> y 
is convergent, then for A > 0 

exists 1121, and 

x = ( ~ m x ; ' ( s " - ' ( w ) ~ e - A " c o s h v d A  y = jOm 2;'{K1(w)) e-*" sin Av dA 

(44 b )  

where LfA is the Laplace transform in A, 

u = o  

-U a L > u  

Figure 4. The sign changes within a single cell in the coordinate frame for chain 1. 
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the result follows upon equating real and imaginary parts. Equations (4) thus represent 
alternative expressions for x and y in terms of the function S. 

2.2. The general solution of the Laplace equation 

As the transformation (2) is conformal the Laplace equation in the (U, U )  frame is [13] 

+ 4"" = 0 
for the electric potential 4. For some separation constant A, the partial solutions of 
the Laplace equation, + ( A ) ,  will take one of the following forms: 

(A,, cosh Au+& sinhAu)(C, cos Au+D, sin Au) 

or 

As there are no restrictions on A in this situation the eigenvalue spectrum will be 
continuous. The general solution for the potential is thus of the form [13,14] 

4 = jw 4(A) dA. 
-m 

2.3. The longitudinal polarizability for chain 1 

We now find an expression for the (longitudinal) polarizability of chain 1 resulting 
from a constant field applied along the x-axis. The potential for this applied field will 
be given by 

,#,QPP = - x, ( 5 )  

The symmetry requirements on +(U, U) in this situation are: 

(i) +(U, -U) = + ( U ,  U) (even in y )  

(ii) +(-U, U)=-4(4 0) (odd in x), 

For a pair of particles whose boundaries are given by U = f U , ,  the following conditions 
apply: 
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where 4"' and 4") denote the potentials external and intemal to the particles respec- 
tively. Now, as region 2 includes the Cartesian origin (U =a), the third condition 
becomes 

(iii) 4 is bounded for large positive U. 

Finally, the solution pair {$ ' I ) ,  +("} must also admit a so-called non-trivial resonant 
solution [5,15], that is, a solution satisfying (6) with +"pp =O.  The fourth condition is 
then 

(iv) There exists a non-trivial resonant solution. 

The only non-trivial solution form satisfying the symmetry conditions ((i) and (ii)), 
the boundary conditions (6), the boundedness condition (iii), and which admits a 
resonant solution (iv), is given by 

and 

It can thus be seen that the eigenfunctions of this problem are 

e*Au cos AV AE(O}UR+. 

The coe5cients AY) will then be found by substituting (5) and ( 7 )  into (6). It therefore 
only remains to decompose + O p p  into its eigenfunction expansion in U and U. Now 
from (2) we have 

9( 2) = U cot UT 

which satisfies the conditions of the theorem with y = O .  Moreover since [ 161 

the following expression for x is obtained upon applying ( 4 a ) :  

x=lom-&e sin Au cosAvdA. 

Equation (8) represents the decomposition of x in terms of the eigenfunctions 
e-Au cos AV. Substitution of (9, (8) and (7) into (6) now yields the following expression 
for the external potential: 

I - &  
sinh Au cos AV dA q.=- 

Au( T +  eZhul) 1+E 

where T is called the dielectric contrast. The boundary conditions (6) lead to a resonant 
solution given by 

tanhA0u, = -11s 

which has the same form as the corresponding result in [Z] for an isolated cylinder 
pair. The difference here is that ul ,  and thus A,, will depend on the fill factor. 
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In order to find the polarizability we now expand the external potential 4"' along 
thex-axis ( u = O )  to O(l/r).Bysetting).=Oin(3a)itiseasilyseenthatalongthex-axis 

U = U cot ux. 
For large x > 0 we let x = r+ na, n E N, 111 < a/2,  and since 

cot u ( r+  na)=cot(ur+ nw) = cot ur  
we are required to find the coefficient of I / r  in the following: 

By expanding the function sin hu and expressing the remaining integral as a series 
[17], we find 

as the potential along the x-axis. Expansion of the denominators in (11) will yield 
integer powers of cot ur. Hence we need to find the coefficient of l / r  in all positive 
integer powers of cot ur. We shall do this by finding the residue of cot" z, n = 1,2,. . . . 

By noting that this residue is given by 

J cot*zdz 
1:1=1 

it is easily shown using integration by parts that 
n = 2 m + l  
n = 2 m .  Res{cot" z} = 

We now use the binomial theorem to expand the denominators in (1  1) and then apply 
(12) to extract the coefficient of I / r  from the resulting expression. When the remaining 
series over n is then put in closed form we are left with 

as the I / r  coefficient in (11). Further algebra leads to the following form for the 
longitudinal polarizability 0111: 

In the limit of large separation between particle pairs (u+O) the polarizability (13) 
should reduce to that for an isolated pair of circles of radius R We now scale all 
dimensions to this radius, thus effectively setting R = 1. The chain parameter U is 
specified byf; the fill factor of metal in the film matrix, while U, is chosen so that the 
particle pair in the central cell cuts the x-axis at the origin and at the points *2 [see 
appendix I(a)). These requirements lead to 

U =  J u,=JcotZf: (14) 

By using (14) to re-express (13) in terms of J we obtain the following: 
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where 7 =tan 25 At this stage we may note that in the limit of small f (15) reduces 
to the familiar dilogarithm formula for the polarizability of an isolated pair of touching 
unit circles [2, 151. 

As the dielectric contrast T is in general a complex number whose modulus may 
be greater than unity, we must find the analytic continuation of the series in (15) in 
order to arrive at a uniformly valid expression for all. To this end we now perform 
the following sequence of operations. Differentiating the series in ( 1 5 )  with respect to 
7, writing the result as a sum of partial fractions, and then integrating with respect to 
7 yields 

where - z n  

. = ~ ( u + n ) '  @(z, s, U )  = - ~2~<1,u#0,-1,-2, . .  

is the Lerch transcendent. Using the fact that [ 181 

dt 

(Re U >0and either I z I s  1, z# 1, R e s >  0 or z =  1, R e s >  1) 

the integrand in (16) can be re-expressed as 
m .  sin pt 

e'+? 
2 i I  -dp 

yielding the following expression for the longitudinal polarizability 

which is valid for all complex T in the cut plane and thus represents the analytic 
continuation of (15). 

2.4. The transverse polarizability for chain I 

We now present the main results in the derivation of the transverse polarizability. For 
a field applied in the y-direction a unique solution pair {+(I) ,  +'"} can be found using 
a sequence of steps analogous to those above. A non-trivial resonant solution exists, 
in this case, for the eigenfunctions 

e**'sin AV A E {O}u R+, 

By using ( 4 b )  the applied field potential 
= - y  

is decomposed into its eigenfunction expansion. Satisfaction of the boundary equations 
(6) and of the relevant symmetry and boundedness conditions then leads to the external 
potential 
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with resonant solution 
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tanh Aoul = E  

the latter again coinciding in its form with the corresponding result in [2]. We use 
( 3 b )  this time to determine + ( I )  along the y-axis, and then find the polarizability from 
the coefficient of I / r  in the expansion of 

sin hu sin(hv coth u r )  dh 
2r lom Au(eZAUl - 7 )  

which turns out to be 

- 2 r  " 

Proceeding as in section 2.3, it can be shown that the transverse polarizability, aL, in 
terms of the fill factor f, is given by 

3. Polarizabilities for chain 2 

As can be seen from figure 3 the boundaries of pan s in chain 2 are precisely the 
orthogonal curves of the coordinate frame for chain 1. Hence the transformation for 
this case is essentially the same as in section 2.1, namely: 

w = iu cot uz. 

Here, curves given by constant IuI are pairs of closed curves whose points of tangency 
all lie along the x-axis at nu, n E 2, but whose axis this time is perpendicular to the 
x-axis (see figure 3(b ) ) .  

Asequence of steps mirroring those used in section 2 is followed, leading ultimately 
to the Following expressions For the longitudinal and transverse polarizabilities For 
chain 2: 

dP 

where U = 2f and uI = 2f cosec 45 Here, as for chain 1, U is found from the fill factor 
f and u1 is chosen so that the particle pair lies within the vertical strip given by 
-1 s x s  1 (see appendix I(b)). We conclude this section by noting that both (17) and 
(18) satisfy Keller's 1191 reciprocal relationship. 

4. Results and discussion 

The polarizabilities are determined from equations (17) and (18) and then normalized 
by dividing by the area of the respective particle pair (see appendix 11). Using data 
for aluminium columns in air, the real and imaginary parts of the normalized 
polarizabilities are graphed as functions of wavelength. In order to facilitate the 
interpretation of results, the three responses (for the two chains and the isolated pair 
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of touching unit circles) are all graphed together according to the following scheme. 
We shall denote by longitudinal all those polarizabilities resulting from applied field 
orientation/particle type combinations appearing in figure 1. In other words, here 
longitudinal will mean an applied field which is parallel to the axis of the particle 
pair. Similarly the transversal polarizabilities will be those corresponding to applied 
field orientation/particle type combinations appearing in figure 2. So here, transversal 
will signify an applied field perpendicular to the axis of the particle pair. Results are 
computed forf=0.3 throughout figure 5. Figures 5(a) and 5(b )  show the real parts 
of the normalized polarizability for the longitudinal and transverse fields while figures 
S(c)  and 5 ( d )  show the corresponding imaginary parts. 

The graphs are physically reasonable and are consistent with what one would expect 
to find. For any direction of the applied field E there are two factors contributing to 
the total polarization of each particle. The first and principle contribution is the degree 
of polarization which would result were the particle isolated. The second contribution, 
of orderf’, is due to the combined polarization effective fields set up between particles 
to the left and to the right of each given particle. 

Consider now the longitudinal cases, that is, those illustrated in figure 1. For chain 
1 (figure I ( a ) )  the two components contributing to the polarization are parallel and 
so there is a relative enhancement in polarizability over that of an isolated pair. In 
chain 2 however (figure l(c)), the repulsion of the polarization charge between neigh- 
bouring parallel cells results in a redistribution of the charge over the edges of each 
particle in such a way that the total polarization decreases relative to that of an isolated 
pair (figure l (b)) .  The situation obtaining in the trunsoersal cases (figure 2) will be 
the wnverse of the above. So, relative to the transversal polarization of an isolated 
particle pair (figure 2(b)),  that for chain 1 will be diminished (figure 2(a)) whilst that 
for chain 2 will be enhanced (figure 2(c) ) .  In both cases though, the long-range 
interactions are smaller in comparison to the polarization of an isolated pair. 

A J Reuben et a1 

5. Conclusion 

In this work we have solved the two-dimensional electrostatic problem for two different 
chains of infinite extent. The fundamental particle in each case is a pair of touching 
closed curves whose axis may be aligned along (chain 1) or at right angles to (chain 
2) the chain axis. Exact analytic expressions (17) ,  (18) have been derived for the 
polarizability of the particle pairs in each chain. The method involves the construction, 
through a conformal mapping, of the appropriate ‘chain’ coordinate frame within 
which the Laplace equation is subsequently solved. The technique of finding the l / r  
coefficient of a real function by finding the residue of the corresponding complex 
function has been found very useful in the determination of the polarizability. 

Working at a fill factor of 0.3 we have calculated the real and imaginary parts of 
the normalized polarizability for the two chains as a function of the applied field 
wavelength. The resulting curves have been compared with the corresponding ones 
for an isolated pair of touching unit circles (figure 5 ) .  We see that, at least for small 
fill factors, the polarization will be largely accounted for by the single isolated pair 
model. Nonetheless, for certain orientations of the applied field the absorption for the 
chains is noticeably greater than that for the isolated pair (figure 5(c), ( d ) ) .  In fact, 
it has been found that when the fill factor is increased to 0.5 these enhancements are 
even larger. Hence we are led to conclude that when high fi l l  factors prevail the long 
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range effects become important. In this situation then the isolated pair model can be 
expected to seriously underestimate the degree of absorption. 

Although only strictly applicable at relatively low fill factors, this model has signalled 
the importance of longer range effects for close approach between the cylindrical 
inclusions. In light of this conclusion, it would therefore be worthwhile developing a 
model permitting study of cylinders which retain their circularity even at high fill 
factors. Such work would confirm in detail the quantitative predictions of the present 
model. 

Appendix 

Appendix I 

In the following we derive expressions for the chain parameters U and U, in terms of 
the fill factor f: 

( a )  For chain 1 we begin by considering the infinite chain of pairs of touching 
circles shown in figure Al.  We shall consider a fundamental cell to be the rectangle 
ABCD with semi-base length L. For circles of radius R the cell area will he 4LR. The 
fill factor f will be defined as 

Area of particle pair 
Area of fundamental cell' 

Hence 

T R  f =z. 
All lengths are now scaled by taking the unit of length to be R (effectively R = 1) and 
so 

In chain 1 

a . x  
2 2.3 

Eliminating L between (i) and (ii) yields 

L = - = - ,  

.=f: 

A I 

(ii) 

(iii) 

Figure Al .  An infinite chain of pairs of touching circles with pair axis along the chain 
axis. The semi-base length of the fundamental cell ABCD is L. 
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The value of u1 is found by requiring that the pair of closed curves in chain 1 (given 
by constant lull and shown in bold in figure 3(a ) )  cuts the x-axis at the origin and at 
the points f2. So, using ( 3 a ) )  with U = U,, x = 2 and y = 0 we have: 

A J Reuben et a1 

u sin 4u 
u -  = U  cot 2u. 
I - 2 Sin'2U 

Together (iii) and (iv) imply 

u1 = f cot 2J 

( 6 )  For chain 2 we consider the infinite chain of pairs of touching unit circles 
shown in figure A2. By defining the fill factor as in (a) we find that here 

and so 

u=2J 

To find u1 this time we shall require that the particle pair in chain 2 (given by constant 
lull and shown in bold in figure 3 ( b ) )  lies between, and tangent to, the pair of vertical 
lines given by x = *l. This situation is shown below in figure A3. The points E and 
F lie on x = 1, the points G and H on x = -1. For chain 2 

U sinh 2 q  
2(sin2 ux+sinh 'q) '  

U =  

i ! 
I i .-- .._-- 

L 
Flgure AZ. An infinite chain of pairs of touching circles with pair axis perpendicular to 
the chain axis. The semi-base length of the fundamental cell A'B'C'D' is L 

v- "'-4 
! ! ] I  

Figare A3. A particle pair from chain 2 with bounding curves given by u = + u , .  The 
parameter U, is chosen so that these curves are tangent to the vertical lines x = *1 at the 
points E, F, G and H. 
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Setting dx/dy = 0 in (vi) with U = ul leads to 

G- 
tanh2y=--. (vii) 

ut 

Eliminating U and y from (vi) by means of (v) and (vii) respectively, and then setting 
x = 1 in the result, leads to 

uI = 2f cosec 4f: 

Appendix I1 

In the following 2F,(a, b; c;  z) will denote the hypergeometric series of the variable z 
with parameters a, 6, and c [IS]. The results shown in figure 5 are polarizabilities 
normalized with respect to area. For chain 1 

where 

NI =+ Io2 sinh-'{sin fxJtan 2fcot f x  - 1) dx 

Calculations were checked by means of the relation 

For chain 2, 

sinh2[( p sin 4f)/2] 
dP  = -- 

where 

N -? Io1 tanh-' dm dx 
2-f2 

which i s  checked using the relation 

AI1 numerical computations were carried out using Mathematica [20]. 
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